
Building a Low-Cost Micro Weather Station for Plant Disease

Forecasting

Problem Statement
Herbivorous insects destroy one-fifth of the world's total crop production annually. This destruction

results in loss for the poor and marginal farmers. There are multiple pest attack prediction models

which can provide guidance to the farmers so that they can take some preventive measures.

All these models depend heavily on the local weather information. Simple weather parameters, such

as temperature, humidity, pressure, wind speed and direction are needed for these models to work

properly.

However, the density of weather station in India is not enough to provide predictions at village levels.

This prevents micro level predictions for the villages to take preventive actions. This problem can be

solved by deploying low-cost weather stations at panchayat level. This blog shows how to make a

simple low-cost weather station using Raspberry Pi and how Azure technologies can help in managing

these weather stations and gather data from these stations.

Solution
The advancement of electronics has enabled us to build a simple micro-weather station using

Raspberry Pi along with sensors to fetch weather data at a low cost. While Azure can be used to

manage the weather station and accept weather data for further analysis.

In this blog, we will create a simple micro-weather station using Raspberry Pi 2B based board and a

DHT11 temperature and humidity sensor. We will also leverage Azure IoT Hub and Azure IoT Edge to

manage the devices and accept data into cloud. In order to extract and store data, we will use Azure

Stream Analytics Job which will store in Azure Table Storage.

The device shown here can be easily extended to gather additional weather parameters. Likewise, the

Stream Analytics job can also be enriched to do further analysis. The data stored in Azure Table

Storage, will allow it to be used for machine learning models to do predictive analysis.

Architecture

Figure 1: Micro-Weather Station Architecture

Figure 1 provides a high-level view of the setup. The heart of the micro-weather station is the

Raspberry Pi which has a DHT11 based temperature and humidity sensor wired to it. Azure IoT Edge

is installed on Raspberry Pi, which hosts the DHT11 custom module. The IoT Edge is configured to

communicate with IoT Hub on Azure. The IoT Edge pulls the Docker image for the module from Azure

Container Registry.

On the Azure side, a Stream Analytics Job pulls the data from IoT Hub, does some simple

transformations, and stores the data in Azure Table Storage.

Implementation
In this section I will describe the steps I took for implementing the micro-weather station and storing

the data in Azure Table Storage. I will not cover the basics of Azure subscriptions, Azure CLI, Docker,

and Raspberry Pi as there are plenty of articles available in internet.

Configuring IoT Hub
Refer to the script below which I executed:

 1. #!/bin/bash
 2.
 3. # Add IoT extension if not present
 4. az extension add --name azure-iot
 5.
 6. # Create resource group
 7. az group create --name agri-iot --location centralindia
 8.
 9. # Create a standard IoT Hub
10. az iot hub create --resource-group agri-iot --name agri-hub001 --sku S1 \
11. --location centralindia
12.
13. # Provision device
14. az iot hub device-identity create --hub-name agri-hub001 --device-id edge01 \
15. --edge-enabled
16.
17. # List registered devices and their status
18. az iot hub device-identity list --hub-name agri-hub001 --output table
19.
20. # Retrieve Connection String
21. az iot hub device-identity connection-string show --device-id edge01 \
22. --hub-name agri-hub001
23.
24. # Create Container Registry
25. az acr create --name acragri --location centralindia --resource-group agri-iot \
26. --sku Basic --admin-enabled true

Figure 2: IoT Hub Provisioning Script

Line 4 adds the Azure IoT extension. Line 7 creates the resource group. Line 10 creates an IoT Hub

named agri-hub001. Line 15 provisions an edge device. The edge device in this case is the micro-

weather station which we will use to collect weather data. Note that the edge enabled switch is

enabled. Line 21 retrieves the connection string for the device to connect to this hub. Note down the

connection string, as this will be used later while provisioning the IoT Edge on Raspberry Pi. Line 21

creates the container registry where the image for the DHT11 module will be kept.

Wiring Raspberry Pi Board
DHT11 is a simple sensor consisting of 3 pins. 2 Pins are for 5.5V and GND, and the one pin is for the

data transfer.

Figure 3: Wiring Diagram for Raspberry Pi and DHT11

Figure 3 shows the wiring diagram which I followed. Left pin is connected to +5.5V on Raspberry Pi

GPIO, this is shown in red. Right pin is connected to GND pin, which is shown in black. Middle pin is

the data pin, which is connected to the GPIO 4 pin on Raspberry Pi.

Installing & Configuring IoT Edge on Raspberry Pi
I flashed Raspbian image on a micro-SD card and started Raspberry Pi. The Raspberry Pi is connected

to the internet through ethernet cable. Once booting completes, I logged into the system, updated it

by issuing apt update and apt upgrade commands.

Once done I executed the following commands to add Microsoft PPA repository:

1. curl https://packages.microsoft.com/config/debian/11/packages-microsoft-prod.deb >
./packages-microsoft-prod.deb
2. sudo apt install ./packages-microsoft-prod.deb

Figure 4: Script to Add Microsoft PPA

Once added I installed moby engine by executing the following commands:

1. sudo apt update
2. sudo apt install moby-engine

Figure 5: Code to install moby engine

I set the logging for the moby engine to local, as suggested by the Microsoft documentation. I did this

by updating the /etc/docker/daemon.json file. I had added the following JSON entry:

1. {
2. "log-driver": "local"
3. }

Figure 6: JSON entry for Docker Daemon

Then I restarted the moby engine by issuing sudo service docker restart command to take

the settings into effect.

Once this is done, I installed the IoT Edge runtime by executing the following command:

1. sudo apt install aziot-edge defender-iot-micro-agent-edge

Figure 7: Command to install IoT Edge runtime

After the runtime is installed, I set the device connection string, which I saved earlier, by executing the

following commands:

1. sudo iotedge config mp --connection-string '<Device Connection String>'
2. sudo iotedge config apply -c '/etc/aziot/config.toml'

Figure 8: Code to configure IoT Edge

After this, the edge device started to appear online on Azure Portal.

Creating & Deploying the DHT11 Module
Before I started to code, I installed IoT Edge module development kit. For which I ran the following

commands:

1. pip3 install iotedgedev
2. sudo npm install --global yo
3. sudo npm install --global generator-azure-iot-edge-module

Figure 9: Development Environment Creation Commands

The module helper iotedgedev uses yeoman to create node.js

project. After installation, I ran iotedgedev solution init

--template nodejs command to create the project. After the

execution of the command, the project gets created, as shown in

Figure 10, under modules folder.

I changed the name of the folder to dht11module to match the

module name I preferred.

The app.js file contains the main code. The generator creates

multiple Docker files for different types of processors. This is

meant to create a module which can be used across multiple

different types of boards’ CPU architectures. Since I am using

Raspberry Pi 2B, I used arm32v7 files.

The generator also generates deployment templates for debug

and production environments. The main difference between

them is that in debug variants, a web socket port is opened for

online debugging. I had to update these deployment files and

used these for deploying the module to IoT Hub. This will be

covered later in this section.

Now let’s look at the main code listing, i.e. app.js file:

 1. 'use strict';
 2.
 3. var Transport = require('azure-iot-device-mqtt').Mqtt;
 4. var Client = require('azure-iot-device').ModuleClient;
 5. var Message = require('azure-iot-device').Message;
 6. var sensor = require("node-dht-sensor");
 7.
 8. Client.fromEnvironment(Transport, function (err, client) {
 9. if (err) {
10. throw err;
11. } else {
12. client.on('error', function (err) {

Figure 10: Module Project Layout

13. throw err;
14. });
15.
16. // connect to the Edge instance
17. client.open(function (err) {
18. if (err) {
19. throw err;
20. } else {
21. console.log('IoT Hub module client initialized');
22.
23. setInterval(() => {
24. console.log("Fetching Temperature and Humidity...");
25. sensor.read(11, 4, function(err, temperature, humidity) {
26. if (!err) {
27. console.log(`temp: ${temperature}°C, humidity: ${humidity}%`);
28. var message = { temperature: temperature, humidity: humidity };
29. var msgText = JSON.stringify(message);
30. var outputMsg = new Message(msgText);
31. client.sendOutputEvent('tempHumid', outputMsg, printResultFor('Sending
received message'));
32. }
33. });
34. }, 10000);
35. }
36. });
37. }
38. });
39.
40. // Helper function to print results in the console
41. function printResultFor(op) {
42. return function printResult(err, res) {
43. if (err) {
44. console.log(op + ' error: ' + err.toString());
45. }
46. if (res) {
47. console.log(op + ' status: ' + res.constructor.name);
48. }
49. };
50. }
51.

Figure 11: Listing of app.js

The code uses the ModuleClient object to interact with IoT Edge. Lines 8 thru 21 initializes the

client object and gets it ready to run the code. Lines 23 thru 34 starts a timer which extracts the

temperature and humidity data from the sensor every 10 seconds. Note how we called the sensor

library to fetch the data in line 25. The call provides three parameters, the first one, “11”, is to signify

that the sensor is a DHT11 sensor, the second one, “4”, signifies that the data pin of the sensor is

connected to GPIO 4 pin on the board and the third parameter is a call back function which gets called

after the data is retrieved. After retrieving the data, it forms a JSON message and sends the message

as an output event to the IoT Hub. Lines 40 thru 50 is a simple call back function which prints the result

of the message queueing to console log.

Now lets look at the Docker file:

 1. FROM arm32v7/node:10-slim
 2.
 3. RUN apt-get update && apt-get install -y --no-install-recommends \
 4. python3.5 \
 5. python3-pip \
 6. build-essential \
 7. make \
 8. && \
 9. apt-get clean && \
10. rm -rf /var/lib/apt/lists/*
11.

12. WORKDIR /app/
13.
14. COPY package*.json ./
15.
16. RUN npm install --production
17.
18. COPY app.js ./
19.
20. EXPOSE 9229
21.
22. USER node
23.
24. CMD ["node", "--inspect=0.0.0.0:9229", "app.js"]
25.

Figure 12: Listing of Dockerfile.arm32v7.debug file

The DHT11 library uses Python modules and C libraries to interact with the GPIO pins. Hence, you will

notice that in lines 3 thru 10 we are installing a whole host of libraries. Since this is debug version, we

are exposing port 9229 in line 20 and added --inspect=0.0.0.0:9229 switch in line 24 to allow

the debugger to connect to the container.

Now, we are ready to build the Docker image and push it to the registry. I ran the following command

to build the Docker image locally. Of course, you will need to have Docker installed on your local

machine.

1. docker build --rm -f "./modules/dht11module/Dockerfile.arm32v7.debug" -t
acragri.azurecr.io/dht11module:0.0.6-arm32v7 "./modules/dht11module"

Figure 13: Docker command to build local image

Here we ran a standard docker build command and directly tagged the image to the Azure Container

Registry which we created earlier. Once build completed, I ran the following commands to push the

image to Azure Container Registry.

1. az acr login --name acragri
2. docker push acragri.azurecr.io/dht11module:0.0.6-arm32v7

Figure 14: Commands to push the local image to Azure Container Registry

Now I had to deploy this image to the Raspberry Pi using the IoT Edge and IoT Hub. In order to do so,

I need to finalize the deployment JSON file.

 1. {
 2. "$schema-template": "1.0.0",
 3. "modulesContent": {
 4. "$edgeAgent": {
 5. "properties.desired": {
 6. "schemaVersion": "1.0",
 7. "runtime": {
 8. "type": "docker",
 9. "settings": {
10. "minDockerVersion": "v1.25",
11. "loggingOptions": "",
12. "registryCredentials": {
13. "acragri": {
14. "username": "acragri",
15. "password": "rshVr...snip...snip",
16. "address": "acragri.azurecr.io"
17. }
18. }
19. }
20. },
21. "systemModules": {
22. "edgeAgent": {
23. "type": "docker",

24. "settings": {
25. "image": "mcr.microsoft.com/azureiotedge-agent:1.4",
26. "createOptions": "{}"
27. }
28. },
29. "edgeHub": {
30. "type": "docker",
31. "status": "running",
32. "restartPolicy": "always",
33. "settings": {
34. "image": "mcr.microsoft.com/azureiotedge-hub:1.4",
35. "createOptions":
"{\"HostConfig\":{\"PortBindings\":{\"5671/tcp\":[{\"HostPort\":\"5671\"}],\"8883/tcp\":[{\"Host
Port\":\"8883\"}],\"443/tcp\":[{\"HostPort\":\"443\"}]}}}"
36. }
37. }
38. },
39. "modules": {
40. "dht11module": {
41. "version": "1.0",
42. "type": "docker",
43. "status": "running",
44. "restartPolicy": "always",
45. "settings": {
46. "image": "acragri.azurecr.io/dht11module:0.0.6-arm32v7",
47. "createOptions": "{\"HostConfig\": {\"Privileged\": true, \"Devices\": [{
\"PathOnHost\": \"/dev/gpiomem\", \"PathInContainer\": \"/dev/gpiomem\", \"CgroupPermissions\":
\"mrw\" }]}}"
48. }
49. }
50. }
51. }
52. },
53. "$edgeHub": {
54. "properties.desired": {
55. "schemaVersion": "1.0",
56. "routes": {
57. "dht11moduleToIoTHub": "FROM /messages/modules/dht11module/* INTO $upstream"
58. },
59. "storeAndForwardConfiguration": {
60. "timeToLiveSecs": 7200
61. }
62. }
63. }
64. }
65. }
66.

Figure 15: Listing of deployment.debug.template.json

Lines 12 thru 18 provides the credentials of the Azure Container Registry I created. This can be

retrieved from the Azure Portal. Line 35 opens the ports so that my module (and any other module)

can interact with the Edge Hub Module. Lines 40 thru 49 defines the dht11module, which needs to be

deployed to the edge. Of most interest is Line 47, which provides the create options for the module.

Note that this container runs in privileged mode and the device /dev/gpiomem is replicated inside the

container. This is used by the sensor library to talk to the sensor. Lines 56 thru 58 defines the route.

Here we are routing all events from dht11modules to IoTHub.

In order deploy, I issued the following command:

1. az iot edge set-modules --hub-name agri-hub001 --device-id edge01 --content
./deployment.debug.template.json –login "<IoT Hub Connection String>"

Figure 16: The command to deploy the module to edge

If everything goes well, you should see the dht11module container getting created in Raspberry Pi and

the edge has started pushing the data to IoT Hub.

Creating Azure Stream Analytics Job
First I created a storage account in the portal as shown in Figure 17 below:

Figure 17: Create Storage Account Screenshot

Once the storage account got created, I went ahead and created the Stream Analytics Job as shown in

Figure 18.

Figure 18: Create Stream Analytics Job Screenshot

In the storage section, I selected the storage account I created earlier as shown in Figure 18 and clicked

“Review + Create”.

Figure 19: Create Stream Analytics Job Storage Section Screenshot

After the Stream Analytics job was created, I created the input source for the Stream Analytics job by

selecting the source as IoT Hub as shown in Figure 20.

Figure 20: Screenshot of Input creation in Azure Stream Analytics

I filled in the details of the IoT hub as shown in Figure 21 and clicked “Save”.

Figure 21: Screenshot of Add Input Blade

Then I went to “Outputs” blade and selected Table Storage as the output option as shown in Figure

22.

Figure 22: Screenshot of the Outputs Blade

In the table storage blade I filled the storage account and a table name where the details will be saved

as shown in Figure 23.

Figure 23: Screenshot of Add Table Storage Blade

Next, I selected the Queries blade and wrote a simple query to transform the data to a format suitable

for table storage and tested the query. Figure 24 shows the query along with test output.

Figure 24: Screenshot of the Queries Blade along with the Query

After this, I saved the query and started the job by clicking the “Start” button as shown in Figure 25.

Figure 25: Screenshot of the Stream Analytics Landing Page with Start Button

After some time, I opened the table storage in Storage Explorer and saw the data as shown in Figure

26.

Figure 26: Screenshot of the data in Table Storage

Challenges in Implementing the Solution
The biggest challenge I faced while implementing the solution was in procuring the sensors and boards

from retail market. The next challenge was to access the GPIO pins from inside containers. This was

resolved with the documentation from Microsoft and the discussions in the Microsoft Learn Portal

forums and Stack Overflow.

Business Benefit
Crop protection is a major challenge for the farmers as they don’t get timely warnings so that they can

prevent crop damage. Solutions like these allow government organizations to utilize the power of

Azure cloud to manage and deploy micro-weather stations at community level and gather local

weather data, perform analysis and warn the local community of probable pest attacks. This

information can then be disseminated from panchayat level to the farmers so that they can take

adequate protection.

Written By: Biswajit Dhar (TATA Consultancy Services Ltd.)

GitHub Link: https://github.com/bdhar1/agri-iot-edge

https://github.com/bdhar1/agri-iot-edge

